

The Collaborative Targeted Assessment: Stepping Stone to Efficiency

Presented by: Jim Grisham

CTA Objectives

- Generate interest in energy conservation
- Identify potential savings of plant utility expenses
- Reduce NOx through energy efficiency

Approach

Where Am I?

- Data Collection By Merisol
- Preliminary Analysis By DOE
- Plant Visit Joint

What's Happening?

- Follow Up Data Collection By Merisol
- Final Analysis By DOE

What Can I Do?

- Report with Recommendations By DOE
- Implementation By Merisol

Where Am I?

Technical Data for Each Heater

- Number of Burners
- Burner Ratings (MMBtu/hr)
- Heater Geometry (Shell Area, Stack Height & Diameter)
- Auxiliary Equipment (Pumps, Fans, Blowers, etc.)
- Fuel Type and Heat Value

Operating Data for Each Heater

- Operating Hours
- Flue Gas Temperatures
- Combustion Air Temperatures
- Fuel Usage and Cost
- Flue Gas % Oxygen
- Charge Weights
- Physical Properties (Specific Heat, Heat of Vaporization)
- Charge Inlet and Outlet Temperatures
- Amount of Vaporization
- External Wall Temperature

Gas Consumed per Unit

Total Gas Consumed: 1,430,000 MMBtu/Yr

Purchased Energy Use

Site Visit

- Review Data Collected
- Answer Questions / Data Needs
- Review Plant Process
- Interview Operators
- Interview Unit Engineers

The Process

Distillation Train (typical)

Distillation Heat Recovery

Merisol employs heat recovery from distillation on some units including:

- Feed/Bottoms Preheaters
- Steam Generation from Overhead Product Coolers
- Combustion Air Preheater

Package Boiler (#2)

BIF Boiler (#4)

Boiler Heat Recovery

Merisol employs heat recovery from boilers including:

- Economizer (#4)
- Condensate Return
- Blowdown Heat Recovery (Out of Service)

Follow-Up Operating Data

- Charge Weights
- Physical Properties (Specific Heat, Heat of Vaporization)
- Charge Inlet and Outlet Temperatures
- Amount of Vaporization

What's Happening?

Analysis

- Model Heat Balance in PHAST
 (Process Heat Assessment & Survey Tool)
- Apparent Imbalance Discovered
- Need for Better Data

Boiler #4

Heat Balance Boiler #4

Boiler #2

Heat Balance Boiler #2

H-21

Heat Balance H-21

H-349

Heat Balance H-349

H-347

Heat Balance H-347

H-7

Heat Balance H-7

What Can I Do?

Recommendations

- 1. Oxygen Control for Flue Gas
- 2. Waste Heat Recovery
- 3. Automatic Temperature Control
- 4. Boiler and Steam System Improvements

Oxygen Control for Flue Gas

- Install in-situ O2 sensors in flue gas
- Control flue gas O2 to 2%
- 4% Projected Savings

Waste Heat Recovery

- Combustion Air Preheaters
- Water Heating
- Steam Reheating
- Steam Generation
- Absorption Chillers
- 5% Projected Savings

Automatic Temperature Control

- Modulate air/fuel to load changes
- Process improvement
- No savings projection provided

Boilers and Steam

- Minimize vent steam (2.9%)
- Optimize condensate recovery (2.1%)
- Improve boiler operating practices (1.5%)
- Use high pressure condensate for low pressure steam (1.5%)
- Repair burner / combustion system parts (1.5%)
- Clean boiler heat transfer surfaces (1.4%)
- Repair steam leaks (1.4%)
- Reduce steam operating pressure (1.3%)
- Improve quality of delivered steam (1.0%)
- Isolate steam from unused lines (0.9%)
- Establish correct vent rate for deaerator (0.6%)
- Add / restore boiler refractory insulation (0.6%)

Boilers and Steam

- Steam generation uses 37% of energy
- 5% Projected Savings

Next Steps

- 1. Optimize current installation
 - A. Tuning
 - B. Leaks
 - C. Maintenance

3. Consider plant-wide assessment

NOx Considerations

- 1. Use NOx in prioritization (Fuel = NOx)
- 2. Take advantage of burner retrofit downtime
- 3. Seal up heaters for NOx control

CTA

- Identify (Where am I?)
- Analyze (What's happening?)
- Optimize (What can I do?)

The Collaborative Targeted Assessment: Stepping Stone to Efficiency